Diffusion Tensor Imaging (DTI) Findings Following Pediatric Non-Penetrating TBI: A Meta-Analysis

نویسندگان

  • R. M. Roberts
  • J. L. Mathias
  • S. E. Rose
چکیده

This study meta-analyzed research examining Diffusion Tensor Imaging following pediatric non-penetrating traumatic brain injury to identify the location and extent of white matter changes. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) data from 20 studies were analyzed. FA increased and ADC decreased in most white matter tracts in the short-term (moderate-to-large effects), and FA decreased and ADC increased in the medium- to long-term (moderate-to-very-large effects). Whole brain (short-term), cerebellum and corpus callosum (medium- to long-term) FA values have diagnostic potential, but the impact of age/developmental stage and injury severity on FA/ADC, and the predictive value, is unclear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship Between Diffusion Tensor Imaging (DTI) Findings and Cognition Following Pediatric TBI: A Meta-Analytic Review

This study meta-analyzed research examining relationships between diffusion tensor imaging and cognition following pediatric traumatic brain injury (TBI). Data from 14 studies that correlated fractional anisotropy (FA) or apparent diffusion coefficient/mean diffusivity with cognition were analyzed. Short-term (<4 weeks post-TBI) findings were inconsistent, but, in the medium to long term, FA va...

متن کامل

Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury.

Diffusion tensor imaging (DTI) is a recent imaging technique that assesses the microstructure of the cerebral white matter (WM) based on anisotropic diffusion (i.e., water molecules move faster in parallel to nerve fibers than perpendicular to them). Fractional anisotropy (FA), which ranges from 0 to 1.0, increases with myelination of WM tracts and is sensitive to diffuse axonal injury (DAI) in...

متن کامل

Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation

Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres.  In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...

متن کامل

Longitudinal changes in the corpus callosum following pediatric traumatic brain injury.

BACKGROUND Atrophy of the corpus callosum (CC) is a documented consequence of moderate-to-severe traumatic brain injury (TBI), which has been expressed as volume loss using quantitative magnetic resonance imaging (MRI). Other advanced imaging modalities such as diffusion tensor imaging (DTI) have also detected white matter microstructural alteration following TBI in the CC. The manner and degre...

متن کامل

Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret

During the acute time period following traumatic brain injury (TBI), noninvasive brain imaging tools such as magnetic resonance imaging (MRI) can provide important information about the clinical and pathological features of the injury and may help predict long-term outcomes. In addition to standard imaging approaches, several quantitative MRI techniques including relaxometry and diffusion MRI h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2014